

1

 ©2020 Virtual Software Systems, Inc.

xRA Technical Overview

xRA Abstract:

After more than 30 years of academic research the principles of true state
preserving Fault Tolerance (FT) have been applied to create the Extended
Resilience Architecture (xRA), a software architecture that improves the
resilience, reliability, availability, and safety of mission critical applications.

xRA is a framework that creates distributed application replicas without a single
point of control. It uses FT consensus management concepts to detect execution
aberrations and continue application execution - before harm occurs - despite
hardware failures or software anomalies.

By the very nature of its distributed independent replica operation, featuring both
spatial and temporal diversity, xRA creates a high entropy randomized execution
timing barrier to help defend against adversaries who try to change the execution
path of applications.

xRA has been implemented completely in software. Its application focus,
independent of the operating system, means it can be adapted to the broadest
range of hardware and software platforms and will also complement many
existing cybersecurity solutions. xRA may be used to implement solutions on
existing platforms, from embedded IoT controllers, to edge servers, to cloud hosts
and enterprise servers, even across heterogeneous platform configurations; on
bare metal, in containers, or using virtual machines.

2

 ©2020 Virtual Software Systems, Inc.

Architecture:

xRA can be thought of as an application comparison engine that instantiates
multiple application replicas and controls their state space execution trajectory to
ensure that the application performs as intended. xRA accomplishes this via two
mutually enabling mechanisms: it enforces determinism of the application while
simultaneously detecting inconsistencies (divergence) among the replicas.
Determinism on one hand enables checking of consistency across replicas, while
divergence detection enables the preservation of application determinism and
correctness by removing the diverging replica. This “deadly embrace”
combination of determinism enforcement and divergence detection makes the
detection mechanism extremely sensitive to divergence and therefore an
excellent indicator of a variance from the application’s intended state space
trajectory.

Core Mechanisms:

Distributed Replication (See Figure 1) – An xRA framework employs multiple
replicas of the code to be protected. Each replica contains the complete
application state, from which replicas unaffected by a failure can continue
executing as if no failure occurred. Replicas operate in fully distributed mode,
without any central deciding entity. The user may configure the number of
replicas depending on mission requirements. Replicas exchange application
replica state information aimed primarily at enabling determinism enforcement
and consistency checking. Inter-replica communications are protected via secure
channel mechanisms.

How Distributed Replication is used with xRA:
➢ xRA creates n (currently n = 2 to 31) replicas that appear to the user as a

single logical application. (note: 2 replicas will detect failure; 3 or more
replicas are needed for continued FT operation)

➢ xRA helps users create tools to deploy replicated xRA applications on
designated hosts. (note: hosts may be located anywhere - data centers,
cloud, edge, or any combination)

➢ xRA applications are created by:
o modifying an existing application,
o creating an application from scratch, or
o creating an xRA service for an application that cannot be modified (ex:

open source)

3

 ©2020 Virtual Software Systems, Inc.

Figure 1 – Distributed Replication

Thread-Level Determinism – Determinism of an xRA application is enforced by
requiring that critical system calls, thread creation and destruction, inter-thread
concurrency control, and I/O, pass through the xRA software which is currently
implemented as an API library. (Thread-Level Determinism means that each
replicated thread will go through exactly the same sequence of xRA calls,
regardless of I/O and inter-thread concurrency control)

Cross-replica entropy – Each replicated application thread is scheduled by its host
operating system at different times across the replicas. xRA allows threads to
assume states relative to one another that will differ markedly from replica to
replica at any one time. The resulting entropy injection makes it harder for an
adversary to successfully coordinate an undetected attack across the replicas.

Consistency Checking (See Figure 2) – Each xRA API call effectively separates
blocks of application code into “islands of resilience” and executes them
atomically from the perspective of resilience. After each block is executed its state
is deterministic and comparable. xRA exchanges and checks each block execution
state for consistency of both code and data across replicas before returning
control to the calling application thread. A code or data divergence occurs when a
consistency check fails. Given the deterministic properties of the system,
divergence can only be caused by influences external to the intended function of
the application: hardware faults, intrusions, pathological system function (ex:
halting), or poor coding.

4

 ©2020 Virtual Software Systems, Inc.

Figure 2 – Consistency Checking Between Two Replicas

Fault Handling – When a divergence from the intended application state
trajectory is detected, the xRA Fault Handler runs real time diagnostics to
determine which replica(s) contains the source of the divergence. The Fault
Handler then reconfigures the system by logically removing that replica from the
set, thus preserving thread-level determinism. Like all other xRA replicated
mechanisms, the Fault Handler is also fully distributed and operates without any
centralized voting entity.

Properties:

Replication – enables the ability to provide continued processing in the face of a
fault, without loss of state or loss of “in-flight” (transaction) data. High availability
applications can be developed to take advantage of this capability. Replication
removes single points of failure: failure of a single replica or a single inter-replica
communication channel does not result in overall application failure because the
surviving replicas hold the full application state from which they can resume
normal operation.

Threat agnostic protection – the mechanisms that enable divergence detection
do not have nor need to have any prior knowledge of what caused the
divergence.

5

 ©2020 Virtual Software Systems, Inc.

Platform independence - Since the xRA API library is written at the application
level, it can be ported to virtually all computing platforms that support
deterministic thread scheduling. Currently it supports Windows and Linux.

Use Case Abstracts:

As an architecture, with a focus solely on protecting the application at the user
level, xRA has the flexibility to be applied across many different hardware and
software platforms as well as many different user applications. Below is a list of
some example xRA use cases that are further described in another document,
available by contacting VS2.

Process Control Systems Protection - xRA process control applications detect and
isolate control system failures and enable continued control operations despite a
replica failure.

Autonomous, Fault Tolerant Control Systems - xRA applications distribute control
functions to multiple control elements (“replicas”) that operate independently yet
appear to non-xRA software or application users as one logical unit. xRA replicas
may be spatially distributed ensuring that operating control is maintained despite
any site failure or disruption, without loss of transactions or operating ‘state’.

Simultaneous Multi-platform Software Testing - xRA-enabled testing
simultaneously tests a software release on multiple heterogeneous platforms –
without requiring the involvement of experienced software developers until
divergences have been detected and a root cause analysis is required.

Hardware Testing - xRA-enabled testing of electronic circuit boards can be used
to test hardware only or the hardware under operating conditions with software.
Testing hardware as it executes software enables quality control personnel to test
for and expose problems that might otherwise not be detected until field
deployment.

Conclusions:

xRA brings new dimensions of resilience, reliability, availability, and safety to
mission- and life-critical applications.

6

 ©2020 Virtual Software Systems, Inc.

xRA is an innovative framework based on the proven principles of Fault Tolerance.
By creating distributed application replicas without a single point of control, xRA
enables continued applications’ operation despite hardware failures and software
anomalies.

xRA’s application focus means it can be adapted to the broadest range of
hardware platforms and operating systems. It can be implemented across
heterogeneous platform environments on the edge, in the cloud, or in the data
center as well as in embedded systems such as those in the IoT. xRA provides new
levels of both physical safety and security - through high availability, fault
detection, and continued operation - before harm occurs.

